module documentation
Undocumented
Class |
|
Undocumented |
Class |
|
Residual Dense Block Style: 5 convs The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) Modified options that can be used: |
Class |
|
ResNet Block, 3-3 style with extra residual scaling used in EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17) |
Class | RRDB |
Residual in Residual Dense Block (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) |
Class |
|
Undocumented |
Class |
|
Undocumented |
Function | act |
Undocumented |
Function | conv1x1 |
Undocumented |
Function | conv |
Conv layer with padding, normalization, activation mode: - CNA --> Conv -> Norm -> Act - NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16) |
Function | conv |
Undocumented |
Function | get |
Undocumented |
Function | norm |
Undocumented |
Function | pad |
Undocumented |
Function | pixelshuffle |
Pixel shuffle layer (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR17) |
Function | sequential |
Undocumented |
Function | upconv |
Undocumented |
Type Alias |
|
Undocumented |
def conv_block(in_nc:
int
, out_nc: int
, kernel_size, stride=1, dilation=1, groups=1, bias=True, pad_type='zero', norm_type: str|None
= None, act_type: str|None
= 'relu', mode: ConvMode
= 'CNA'):
(source)
¶
Conv layer with padding, normalization, activation mode: - CNA --> Conv -> Norm -> Act - NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
def pixelshuffle_block(in_nc:
int
, out_nc: int
, upscale_factor=2, kernel_size=3, stride=1, bias=True, pad_type='zero', norm_type: str|None
= None, act_type='relu'):
(source)
¶
Pixel shuffle layer (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR17)